
all about the love
between Python and PostgreSQL

��“psycopg”

��
‘2021-11-17’::date

PostgreSQL
● You know what we are talking about
● (it’s a database)

��

Python
● High level programming language
● Ubiquitous
● The one with the whitespaces

��

��

Psycopg! ��
��

psycopg2:
a long history

psycopg 3:
a new story

Why psycopg 3?
● Introducing server-side parameters binding

○ breaking change
● Pure Python + C speedup

○ to allow non cpython use
● Async I/O support
● Fixing the last 15 years of mistakes

○ Preparing the next mistakes…

Psycopg 3:
A sponsored project!

sponsors >

https://www.psycopg.org/sponsors/

What is Psycopg?

● ⚙ industry standard Python-PostgreSQL adapter
● 📚 it’s a library (not a framework ⚙ not a daemon 👻 …)
● 💪 libpq based
● ⚖ part% Python, (1 - part%) C
● (🐍 + 🇨) + 🐘 = ❤

psycopg 2 docs >
psycopg 3 docs >

https://www.psycopg.org/docs/
https://www.psycopg.org/psycopg3/docs/

Installation

install docs >

● pip install psycopg
○ requires system libpq

● pip install psycopg[c]
○ requires C compiler and -dev libraries
○ requires system libpq

● pip install psycopg[binary]
○ self-contained binary packages
○ on supported platforms (now on Alpine Linux too!)

https://www.psycopg.org/psycopg3/docs/basic/install.html

Usage
>>> import psycopg

>>> with psycopg.connect(“dbname=piro”) as conn:

... cur = conn.execute(“SELECT * FROM mytable”)

... cur.fetchone()

(“hello, world”, 42)

usage docs >

https://www.psycopg.org/psycopg3/docs/basic/usage.html

Passing parameters
The bad way...

>>> conn.execute(

... “INSERT INTO mytable VALUES (‘%s’, ‘%s’)” %

... (value1, value2))

Don’t do this! 💀

params docs >

https://www.psycopg.org/psycopg3/docs/basic/params.html

Passing parameters
The good way!

>>> conn.execute(

... “INSERT INTO mytable VALUES (%s, %s)”,

... (value1, value2))

psycopg takes care of the translation 👍

params docs >

https://www.psycopg.org/psycopg3/docs/basic/params.html

Receiving results
>>> cursor.fetchone() # -> record

>>> cursor.fetchmany(n) # -> list of records

>>> cursor.fetchall() # -> list of records

>>> for record in cursor:

... do_something(record) # -> iteration

params docs >

https://www.psycopg.org/psycopg3/docs/basic/params.html

What is a record?
Basic tuples

(“John”, 42)

Dictionaries

{“name”: “John”, “age”: 42}

Any custom object

Person(name=“John”, age=42)
row factories >

https://www.psycopg.org/psycopg3/docs/advanced/rows.html

Native data types
● Strings (binary, unicode)
● Numbers (integer, fixed precision, floating point)
● Date/time objects, timezones
● Arrays
● Network types
● UUID
● JSON!
● …
● (XML is left as exercise)

data types >

https://www.psycopg.org/psycopg3/docs/basic/adapt.html

PostgreSQL data types
● Composite
● Range
● Multirange (from v14)
● Hstore
● Geometric types

extension types >

https://www.psycopg.org/psycopg3/docs/basic/pgtypes.html

Transactions control
>>> with conn.transaction():

... conn.execute(“INSERT 1”)

... conn.execute(“INSERT 2”)

... with conn.transaction() as tx:

... conn.execute(“nested”)

... raise Rollback(tx)
transactions >

https://www.psycopg.org/psycopg3/docs/basic/transactions.html

COPY support
>>> with cur.copy(“COPY mytable FROM STDIN”) as copy:

... for row in some_generator():

... copy.write_row(row)

>>> with cur.copy(“COPY mytable TO STDOUT”) as copy:

... for row in copy.rows():

... some_consumer(row)
COPY >

https://www.psycopg.org/psycopg3/docs/basic/copy.html

Notifications
>>> conn.execute(“LISTEN mychan”)

>>> for notify in conn.notifies():

... print(notify)

Notify(channel='mychan', payload='hello there')

Meanwhile in psql...

=# NOTIFY mychan, ‘hello there’;
notifications >

https://www.psycopg.org/psycopg3/docs/advanced/async.html#asynchronous-notifications

Connection pools
>>> with ConnectionPool() as pool:

... # bring it on, threads

● Lightweight, in-process connection pool
● Not a replacement for pgbouncer (out-of-process)

connection pools >

https://www.psycopg.org/psycopg3/docs/advanced/pool.html

...and more
● async or multi-thread communication
● support for static typing
● prepared statements
● binary data support
● libpq access from Python

What’s next?
● Batch/pipeline mode
● Streaming query (not supported yet by PostgreSQL)
● Logical replication (in psycopg2)
● JSON binary mode (under exploration)

questions?

��Thank You!

��

